Ic 16th International Cognitive Linguistics Conference
LC HHU Dusseldorf - August 8, 2023

Redefining the current discourse space model
as a recursive monadic architecture

Yoichiro Hasebe

Doshisha University, Japan

s tl__: ALY
yhasebe@mail.doshisha.acjp vvv ﬂ;}‘;;ﬁnﬁ?;

o

Handout PDF

Introduction

This presentation attempts to model the construction process of monologic/dialogic discourse.

The goal is twofold:

1) To redefine Langacker’s notion of the current discourse space
(CDS) as a recursive structure that incorporates the idea of
“monads” from the functional programming (FP) paradigm.

L Amysays) >\ Bob thinks)= \Chris believesj >\ Dorisleft)

2) To propose a means to simulate CDS as a monadic recursive

structure on a computer program using a GTP-based

text/chat completion API.

Monadic Chat: https://yohasebe.github.io/monadic-chat
[450 | o

https://yohasebe.github.io/monadic-chat

Current Discourse Space (CDS)

Regarding the sequential nature of language processing, Langacker (2001: 145) states as follows:

Metaphorically, it is as if we are “looking at” the world through a window, or viewing frame. The
immediate scope of our conception at any one moment is limited to what appears in this frame,

and the focus of attention—what an expression profiles (i.e. designates)—is included in that scope.

ﬂ:urrent Discourse Space \
Usage Event

N (7

Viewing Frame \

> || [@-@) |17 ,
\) Ground I
Time | |) __Context /

\ _)\ SheredKnowledge / \ Y, /

Langacker (2001: 145)

Current Discourse Space (CDS)

Yann LeCun & « X
‘ @ylecun - Follow

Language is an imperfect, incomplete, and low-bandwidth
serialization protocol for the internal data structures we call
thoughts.

11:36 PM - Mar 6, 2021 ©)

® 37K @ Reply (2 Copy link

Read 157 replies

Current Discourse Space (CDS)

While new elements appear one after another in the viewing frame, the surrounding “environment”
containing such elements as the ground, context, or shared knowledge looks like always staying
there though being constantly updated.

Question: How is this possible?

Should we assume something like “global variables” in computer programming to keep everything in
a certain place?

ﬂ:urrent Discourse Space \
No. Usage Event

N (7

Viewing Frame \\ / \
-
> @(_“)@ >

() Ground I >
\ / \ Context /

\ _) _Shared Knowledge J _ Y, /

Langacker (2001: 145)

Time

Linguistic Structures as Instructions

Following a suggestion by Harder (1996), we might think of linguistic structures (of whatever size) as
instructions to modify the current discourse space in particular ways. Each instruction involves the
focusing of attention within a viewing frame. A discourse comprises a succession of frames each

representing the scene being “viewed' and acted on by the speaker and hearer at a given instant.

(Langacker 2001: 151)

__

speech speech speech
e‘I:ent 1 e esent 2 i esent 3
Input:
| | * Linguistic instructions (LI)
LI TN DT N TR S N TS SR SRR] LI :
| g - State (ground, context, shared knowledge)
state » state state state
. T L g
P / P / e Output:
' result 1 . . result 2| . result 3 . ,
: / ; / ; | * Linguistic instructions (LI)
sl | ; s2 : 5 s3 — > state

Concept of Monad

What is monad?

« The concept of a monad is based on the category theory of mathematics and is widely
used in the FP paradigm in computer science. (Wadler 1995; Hutton 2016; Petricek 2018).

« A monad is often described as a “pipeline structure for handling a value wrapped in
an environment that recursively evolves.’

» A structure that satisfies the conditions for being a monad is characterized by its ability
to execute operations sequentially and continuously while updating the structure given
as the environment.

* A monad maintains its basic homomorphism, both in its initial state and in states that
evolved through multiple operations.

Another data structure analogy?

S

/\

’1'. Domain ofI sta tiation ,’1 Domain of Instantiation

List
Set

we [

77777777777777 Simon \Y NP
@& iy | el
© IO ReIRO NGNS
Domain of Instantiation ”i 77777777777777777 Jr' made Det Adj N
N etWO rk @ (b) ©

Hierarc hy a great tool

Class/Instance e e lelalo]e]e

Domain/Function/Mapping

M o n a d ? Caused-Motion
.
Pat sneezed the napkin off the table [\ [® \

| T . >e

Resultative Transfer

Source Domain Target Domain

She kissed him unconsicous Sally threw a football to him o

' ,
st . ’ ! Y
Intransitive Motion & T >0,
N .

The boy ran home

i
U
N N
AN AN
- — o« ©® >
F} \‘—j
Intransitive Resultative

The jello went from liquid to solid

Monads in FP

s - List Monad

== The List Monad in functional programming represents non-deterministic
computation. It's a way of chaining operations on lists together, where each
operation could potentially return multiple results (i.e., a list of results). This is
akin to exploring many possible computational “paths” at once.

"
"
N

o e - Maybe Monad
==[= The maybe monad handles computations that might fail or return nothing
- ' (null). Instead of having to check for null or error conditions at every step, you
can chain computations together with the Maybe Monad.

- State Monad
The State Monad is a construct in functional programming that provides a
way to handle state without relying on global variables. Functional
programming languages are typically stateless, and the State Monad offers a
way to carry state through a sequence of computations in a controlled and

predictable manner.

List Monad

[a,b] - [c.d] ;
a »
\ :

b »
\ :

Maybe Monads

» nothing
C

SUuccess

process 2
» nothing

bind

>>=
failure
success

process 1
a

11

State Monad

__

process 1 . process 2 . process 3
input 1> input p-----oopesseossoee- ---|input! poeeeseoqeemeesseees F--{input " i
state > state o state o state E

' result 3

E : v3 E > output
i } s3 i1+ > state

By viewing discourse as a state monad, we can regard a sequence of usage events as a recursive
function application with a state object passed from one usage event to another.

Conditions for Monadic Structure

What do these monads have in common?

1. There is a procedure called unit that wraps the target value a in the environment

unit::a— | a

2. There is a procedure called map that “lifts” a function f to another function f’ that deals with the
value wrapped in an environment

map::(a—b)—>(a|—|b|)

3. There is a procedure called join that flattens a doubled layer of environments.

join::||a|| —|a

Monadic Operation: Unit @

®
® g 4
o 7

unit

We assume grounding as one of the linguistic manifestations of unit in the monadic
structure of linguistic discourse .

Grounding is “a semantic function that constitutes the final step in the formation of a
nominal or a finite clause.”

(1) a. *Jennifer notice wall need new coat of paint

b. Jennifer noticed that the wall needs a new coat of paint.
c. This wall needs a new coat of paint.

14

Monadic Operation: Map @ p ®

mt mt

map

The shift in narrative style in the development of discourse can be considered as a manifestation of the map
operation.

You can detach the value from its environment and get it back to it again.

(2) "Think about it, and you'll figure it out,” Ao said, finally.

Tsukuru was speechless.

What was he talking about? Think about it? Think about what? If | think any harder about anything, | won't

know who | am anymore.

“It's too bad it turned out like this,” Ao said.

Murakami, Haruki. Colorless Tsukuru Tazaki and His Years of Pilgrimage (p.28)

15

Monadic Operation: Join

' (Y
' o
' o
' o
' o
' [o

join

The grounding structure could easily multi-layered when we quote, describe past events, or narrate a story.

While maintaining this multi-layered structure as contextual knowledge, the subsequent discourse must unfold on a

flattened structure.

(3) "That's all he told you?” Sara asked.

“It was a short conversation, minimalist. That's the very best | can reproduce it
Murakami, Haruki. Colorless Tsukuru Tazaki and His Years of Pilgrimage (p.29)

Sentences like "Amy says Bob believes Chris thinks Doris left” are not often actually spoken.

N a

(A

r

o m

N b
i @—v L[]

©)—

|

h Amysays) >\ Bobthinks)

\Chris believes)

\Doris left)

16

Monadic Chat

There are practical advantages to redefining the CDS as a monadic
structure.

This idea can be used as a design pattern to implement a chatbot
application like ChatGPT.

Hasebe (2023) developed Monadic Chat, a framework to provide
an interactive interface to conduct a natural language conversation
with Al, using the GPT text completion APl of OpenAl.

https://yohasebe.qgithub.io/monadic-chat

It offers unique accumulator and reducer mechanisms, with the
accumulator storing previous utterances while the reducer helps
manage the amount and composition of the accumulator.

B Monadic :: Chat

A highly configurable Ruby framework for creating intelligent chatbots

GPT Settings / Current Base App
Base App a Chat
Chat (Default) v

This is the standard application for monadic chat.

It can be used in basically the same
Select Model Max Tokens Context Size R A

ChatGPT.
gpt-35-turbo Clear 1000 10
Temperature Top P Presence Frequency Session
(©5) (©0) Penalty (0.0) Penalty (0.0) @Reset| [@import| B Export
— ° —y —y

Press "reset" to clear conversation and go back to

Initial Prompt the default "chat" app.

You are a friendly and professional consultant with real-time, up-to-date information about almost

~ Status
anything. You are able to answer various types of questions, write computer program code, make decent AP,
suggestions, and give helpful advice in response to a prompt from the user. If the prompt is not clear v
enough, ask the user to rephrase it. Use the same language as the user and insert an emoji that you deem
appropriate for the user's input at the beginning of your response. Spesch

@D Automatic Language Detect

Initiate from the assistant Language

English (United States) >

Voice
" G le US English v
XN) Monadic Chat Console == gl
" Rate (1.0}
Status: Running &9
—
#20 [web] exporting to image
#20 exporting layers
#20 exporting layers 0.3s done
D (2 viting incge
#20 naming to docker.io/library/app-web done
#20 DONE 0.3s
Monadic Chat Docker image has been built successfully!
Monadic Chat has been started
Access http://localhost:4567 on your browser
1 P Start @ Stop C' Restart @ Open Browser X Quit I
% Dialog e —
@ Assistant o> x g

4 Hello! How can | assist you today? Please let me know what language you would like to practice or if you have any specific topic in
mind. &

@ user (L

Let me practice my English conversation skills.

@ Assistant o> x g

That's great! I'd be happy to help you practice your English conversation skills. Feel free to ask me any questions or start a conversation
on any topic you'd like to discuss. I'm here to assist you! &

Use easy submit (enter key or stop button) Auto speech Role @ User v

Type your message.

- Send - Clear smp LT e

17

https://yohasebe.github.io/monadic-chat

Architecture of Monadic Chat

@ Anatural language user input and
a state object are provided to the
system.

The state object contains:
a) instructions for GPT

GPT text-completion API

@ The accumulator is updated with user
input and response output. The reducer
mechanism keeps the total size of the
accumulator to a pre-specified amount.

b) various state properties
c) an accumulator

State Object

API Input

API Output

J g o

Reducer

S

[] —

User Input

@

JSON

JSON

instructions M=
state properties]
accumulator =]

new input —J

state properties i/

accumulator M=

new output — --f--

| YO

1>
1>

JSON
instructions 1=
state properties L/

accumulator @

State Object

s

— []

Response Message

conversation turn.

® The response message is presented to
the user, while the state object containing
the initial instructions, the state properties,
and accumulator is passed on to the next

unit

map

join

@ The user input and the properties of the state
object are merged into a JSON object and sent
to the GPT text-completion API.

@ The API responds with a JSON object that contains a
natural language response output and the state

properties appropriately updated.

18

Architecture of Monadic Chat

@ A natural language user input and
a state object are provided to the
system.

The state object contains:
a) instructions for GPT

b) various state properties
c) an accumulator

GPT text-completion API

State Object

API Input API Outg

N

[]

User Input

JSON JSON
‘ instructions @ --l---l --------------------------- J ...

Architecture of Monadic Chat

State O

> [

> []

State Object | I ‘ l ‘ I Y,
SR o . .
® S @) @ ; ®
User Input JSON JSON JSON
instructions R B e ----p instructions =
state properties =’ state properties L] state properties L’
accumulator = accumulator =T i';:: accumulator =7
new input L] e eetecmcmmc e] i
new output - --|--
unit map join

Response M

® The res|
the user,
the initia
and accl
converse

@ The user input and the properties of the state
object are merged into a JSON object and sent
to the GPT text-completion API.

natural language

® The API responds with a JSON object that contains a
response output and
properties appropriately updated.

the state

20

Architecture of Monadic Chat

tural language user input and
ite object are provided to the
xm.

state object contains:
structions for GPT
irious state properties
1 accumulator

@ The accumulator is updated with user
input and response output. The reducer
mechanism keeps the total size of the
accumulator to a pre-specified amount.

State Object

S

[

User Input

state properties i’

State Object

state properties L/

state properties]

GPT text-completion API
A
API Input API Output Reducer
o o .
@ i@ i @ ; ®
JSON JSON JSON
instructions R e RSttt ---- instructions M=

--{-»
accumulator accumulator i 1.3 accumulator
new input) P O R | 4
new output — ----
unit map join

> s

— []

Response Message

® The response mess
the user, while the ste
the initial instructions,
and accumulator is p¢
conversation turn.

21

Architecture of Monadic Chat

'rties
‘ API Input API Output Reducer

late Object | | State Object

7 . o o > s
® i@ HE© @ ®
ser Input JSON JSON JSON Response Message
instructions R e B e ----» instructions =’
state properties I’ state properties L/ state properties i/
et ® The response message is presented
accumulator accumulator =1 e accumulator] the user, while the state object contain
new input e S TS S L i the initial instructigns, the state properti
; and accumulator is passed on to the n
new output [y conversation turn.
unit map join
user input and the properties of the state @ The API responds with a JSON object that contains a
:ct are merged into a JSON object and sent natural language response output and the state
1e GPT text-completion API. properties appropriately updated.

22

Architecture of Monadic Chat

GPT text-completion API
tand X pietl @ The accumulator is updated with user
' the .
input and response output. The reducer
mechanism keeps the total size of the
A accumulator to a pre-specified amount.
API Input API Output Reducer
ject | J State Object
7 . . o s
@ e ;e @ ; ®
ut JSON JSON JSON Response Message
instructions R e B et ----% instructions =’

state properties]

accumulator

new input

=

7

state properties L/

accumulator @

new output — --F--

j : accumulator @

state properties g/
® The response message is presented to

the user, while the state object containing
the initial instructions, the state properties,
and accumulator is passed on to the next
conversation turn.

unit

map

join

23

Architecture of Monadic Chat

GPT text-completion API
Ftar]r;d X pietl @ The accumulator is updated with user
input and response output. The reducer
mechanism keeps the total size of the
A accumulator to a pre-specified amount.
API Input API Output Reducer
ject | J State Object
d . . . - i -~
@ e ;e @ ; ®
ut JSON JSON JSON Response Message
instructions R e B et --- instructions =/

state properties

accumulator

new input

=
=

7

state properties L/

accumulator @

new output — --F--

] : accumulator @

state properties =/
® The response message is presented to

the user, while the state object containing
the initial instructions, the state properties,
and accumulator is passed on to the next
conversation turn.

unit

map

join

24

Accumulator and Reducer

This is somewhat speculative . . . but

accumulator and reducer mechanisms may allow for computational experimentation of processes
such as:

- Incremental context building (Harder 1996; Langacker 2008)
- Stack-based item replacement (Chafe 1994)

- Compression and abstraction of concepts (Fauconnier & Turner 2000)

- Exemplification from past experience (Barsalou 2005; Bybee 2010)

ey wmw

t, t, t, t3 t, t, t; t, t3 t, T3T4

25

Summary

- Langacker’s current discourse space (CDS) model can be considered monadic in nature.

- Monad has a mathematical/computational background as many widely-used cognitive linguistic
data structures are.

- If a structure is monadic, the three operations, unit, map, and join must be available.

- Grounding, as a semantic function that constitutes a final step in the nominal/clausal formation,
may be an essential component of the monadic structure of discourse.

- The monadic structure naturally fits the architecture of a chatbot application.

- Monadic Chat is such an app utilizing OpenAl text/chat completion API equipped with accumulator
and reducer mechanisms.

- Accumulator and reducer mechanisms may offer a testing ground for experimenting validity or
degrees of significance such cognitive linguistic concepts and notions proposed so far.

26

References

Barsalou, Laurence. W. 2005. Abstraction as dynamic interpretation in perceptual symbol systems. In Lisa Gershkoff-Stowe & David
H. Rakison (eds.), Building object categories, 389-431. Mahwah, NJ: Lawrence Erlbaum.

Bybee, Joan. 2010. Language, usage and cognition. Cambridge: Cambridge University Press.

Chafe, Wallace L. 1994. Discourse, consciousness, and time: The flow and displacement of conscious experience in speaking and
writing. Chicago: University of Chicago Press.

Fauconnier, Gilles & Mark Turner. 2000. Compression and global insight. Cognitive Linguistics 11(3-4). 283-304.

Hasebe. 2021. An integrated approach to discourse connectives as grammatical constructions. Kyoto: Kyoto University PhD
dissertation.

Hasebe. 2023. Monadic Chat: Framework for managing context with text completion API. Proceedings of the 29th annual meeting of
the Association for Natural Language Processing, 3138-3143.

Harder, Peter. 1996. Functional semantics: A theory of meaning, structure and tense in English. Berlin: Mouton de Gruyter.
Hutton, Graham. 2016. Programming in Haskell, 2nd edn. Cambridge: Cambridge University Press.

Langacker, Ronald W. 2001. Discourse in cognitive grammar. Cognitive Linguistics 12(2). 143-88.

Langacker, Ronald W. 2008. Cognitive grammar: A basic introduction. Oxford: Oxford University Press.

Langacker, Ronald W. 2012. Interactive cognition: Toward a unified structure, processing, and discourse. International Journal of
Cognitive Linguistics 3(2). 95-125.

Langacker, Ronald W. 2021. Functions and Assemblies. In Kazuhiro Kodama and Tetsuharu Koyama, eds., The Forefront of Cognitive
Linguistics, 1-54, Tokyo: Hituzi Shobo.

Petricek, Tomas. 2018. What we talk about when we talk about monads. The Art, Science, and Engineering of Programming 2(3),
https://programming-journal.org/2018/2/12/. (1 January 2023.)

Wadler, Philip. 1995. Monads for functional programming. In Rogardt Heldal, Carsten Kehler Holst & Philip Wadler (eds.), Advanced
functional programming, 24-52. Dordrecht: Springer.

1 =

Handout PDF

27

